High Temperature Hyperthermia in Breast Cancer Treatment
نویسندگان
چکیده
Globally, breast cancer is the most common type of cancer among women, which comprises 23% of all female cancers that are newly diagnosed in more than 1.1 million women each year. Over 411 000 deaths result from breast cancer annually; this accounts for over 1.6% of female deaths from all causes. Hyperthermia also called thermal therapy or thermotherapy is a type of cancer treatment in which body tissue is exposed to high temperatures. Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. Otherwise, ablation or high temperature hyperthermia is defined as the direct application of chemical or thermal therapies to a tumor to achieve eradication or substantial tumor destruction. Many ablation modalities have been used, including cryoablation, ethanol ablation, laser ablation, and radiofrequency ablation. The most recent development has been the use of microwave ablation in tumors. Furthermore, The use of breast cancer mammography screening has allowed detecting a greater number of small carcinomas and this has facilitated treatment by minimally invasive techniques. Currently, physicians test minimally invasive ablation techniques to determine if they will be acceptable substitutes for surgical removal of primary breast tumors. Therefore, numerical electromagnetic and thermal simulations are used to optimize the antenna design and predict heating patterns. A review of different hyperthermia ablative therapies, for breast cancer treatment is summarized in this work. Otherwise, advanced computer modeling in high hyperthermia treatment and experimental model validation will be referred to in this chapter.
منابع مشابه
Comparison of the presence and non-presence states of magnetite nanoparticles in tissue-equivalent breast phantom via radiofrequency hyperthermia
Objective(s): Breast cancer is a fatal disease and the leading cause of mortality in women. Radiofrequency hyperthermia is an approach to the treatment of cancer cells through increasing their temperature. The present study aimed to investigate breast tumor ablation via radiofrequency hyperthermia in the presence and non-presence states of magnetite nanoparticles and assess the effects of magne...
متن کاملEffect of the combination of 6 MeV radiotherapy with hyperthermia and gold nanoparticles on the MCF-7 breast cancer cells
Introduction: Combining radiotherapy as one of the main modalities used for cancer treatment with other modalities such as hyperthermia has recently played a special role in reducing side effects and improving treatment outcomes. In addition, Gold nanoparticles (GNPs) have also attracted attention as suitable clinical agents for enhancing the effect of radiotherapy in treating ...
متن کاملAn investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment
Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...
متن کاملEffect of magnetic fluid hyperthermia with dendrimer coated iron oxide nanoparticles on breast cancer in BALB/c mice
Introduction: Magnetic fluid hyperthermia (MFH) is a promising therapeutic method in cancer therapy with using magnetic nanoparticles (NPs). In this study, we assessed the effect of MFH on mechanisms of cell death in murine breast cancer cell line (MC4-L2) and also the treatment of breast tumor in BALB/C mice using four generation dendrimer coated iron oxide nanoparticles (G4@I...
متن کاملStudy on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013